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1. INTRODUCTION

Piloting an aircraft or firing a missile are examples of complex control
and guidance tasks found in modern warfare. The human operator in such tasks
exercises effective control by constructing, through training and experience,
an 'internal model' of the process dynamics. Using this model he can anticipate
the trajectory resulting from his control actions based on the current displayed
position. In general, the more complex the process the longer it will take the
operator to build his model, and the more flawed that model will be. Laboratory
studies confirm that human predictive skills are inadequate for all but the most
elementary processes (Sheridan and Rouse 1971, Rouse 1973, Van Heusden 1977).

The problem is particularly acute in flight systems and missile guidance,
where both training and operational errors are costly. Simulators are now
extensively used in both these areas, so that the pilot or gunner may acquire
as effective a model as he is capable of within the given training time con-
straints. However, the fact that operational hit rates in manually-guided
missile systems tend to be low suggesm that some form of automatic aiding would
be beneficial. However, total automatic control of either a flight or a missile
system is clearly undesirable if mission flexibility and manual override are to
be retained. For aircraft, a recent advance has been to feed into a mathemati-
cal simulation of the aircraft dynamics the pilot's control actions and such
environmental factors as can be measured, and to generate in real-time a pre-
dicted future trajectory for the aircraft. Such a display is termed a predictor
or predictive display.

The predictive display concept was first derived by Kelley in 1958, based
on Ziebolz and Paynter's (1954) theory of two-time scale computing. In the last
20 years the value of predictors has been well documented, mostly in military
and vehicular simulations as far removed as aircraft landing, VTOL and heli-
copter hovering, air-traffic control, lunar rovers, spacecraft guidance, docking
ocean-goinS vessels, submarine depth control and remote control guidance systems.
This work is reviewed in Warner (1969), Smith and Kennedy (1975) and Goillau
(1978). Towill (1980) further advocates the use of microelectronic digital
predictor systems for advanced aerospace applications.
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Predictor displays have been shown to be reliably superior to 'quickened'
displays (McLane and Wolf, 1966). Common findings are that learning times are
reduced, often to the point vhere novice operators are able to control
relatively complex systems with essentially no training whatsoever. In
addition, human operator performance is substantially iivroved in terminal
control tasks and in controlling non-linear systems or linear systems with pure
time delays. Predictor-aided manual control can approach optimal control with
respect to a particular performance criterion, as the operator can plan optional
courses of action to increase the likelihood of mission success. Lastly, the
information processing requirements on the human operator can be reduced,
particularly in multi-dimensional control tasks.

The technique is equally applicable to missile guidance, where a computer-
generated missile flight path could be superimposed onto an optical or thermal
sight, as in Figure 1. This approach transforms a conventional two-dimensional
(x, y) representation of the three-dimensional (x, y, t) problem, where the time
axis must be inferred by the operator, into an alternative representation where
the time component is made explicit by the predictor trace. A further advantage
is that the predictor trace, once aligned, could be used to automatically home
the missile to target proximity in the closing stages of an engagement via a
'dead man's handle' arrangement, even after the operator or his sight had been
rendered inoperative by enemy action.

Whilst the efficacy of predictive techniques has been well documented,
there has been little work on the optimum design of predictor display systems
to match a particular application. The present study reviews the more important
parameters affecting predictor display design, and demonstrates how these may
be optimised experimentally for a given system.

2. PREDICTIVE DISPLAY DESIGN PARAMIETERS

The main parameters inherent in any closed-loop manual control task
incorporating a predictor display are:

1. System dynamics - gain and control order (effective number of
integrations).

2. Prediction model fidelity - the accuracy with which the prediction
model represents the controlled system's behaviour.

3. Prediction span (extrapolation interval) - the real-time period over
which predicted system response is displayed. This is frequently the same
as the prediction time - the real-time interval over which the future
system response is computed by the prediction model.

4. Input uncertaintly - a measure of the accuracy of the updating
information fed to the prediction model, including the effect of external
disturbances much as crosswinds.

5. Repetition (refresh) rate - the number of successive predictions
displayed to the operator per unit of time, often the frequency at which
the prediction model is itself updated.

6. Mode of control - refers to whether the predictive display is arranged
in on-line, off-line, or supervisory configuration.

Factors peculiar to manual control systems not listed above mainly involve
display formats, and the problem of which system variables need to be displayed
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to the operator. The answers to such questions are system specific. No
general quantitative studies of predictor characteristics have been conducted,
however, and as the following discussion of predictor characteristics and
their interactions implies there is clearly much to be learned in this area.

2.1 SYSTEM DYNAMICS

Several workers have addressed experimentally the question of system
gain and control order. Warner (1969) reports that in his terminal control
task operator performance was independent of system parameters over the
ranges investigated, ie from high gain (short response times) to low gain
(long response times). However, the more important system-orientated
performance measures did show a dependence upon predi-ctor system parameters.
It appears that the sensitivity of the performance measure(s) to control
action timing is an important factor. Bernotat and Widlok (1966) found
that their extrapolative predictor display improved the quality of control
over a no predictor condition for all values of system gain investigated,
but the improvement was most pronounced at high gains. In absolute terms,
error scores using the predictor reached a minimum level for medium gain
and rose at low and high gains.

As far as control orders are concerned, Bernotat and Widlok (1966)
report that in their stabilisation problem the greater the number of
process integrations, the larger was the benefit obtained from the
predictor. Bernotat (1972) notes that, as control order increased from
two to three integrations, errors rose considerably as did the amount of
control effort required of the operator to achieve that level of

performance.

Rouse (1970) summarises the situation when he suggests that predictive
aids may be of maximum benefit in tasks of medium difficulty: they are
probably unnecessary for easy tasks, and in very difficult tasks the
operator is so overloaded that he will ignore the information. Rouse's
experimental evidence supports this suggestion.

2.2 PREDICTION MODEL FIDELITY

A 'perfect' predictor instrument is one which completely predicts the
future state of a controlled process, by displaying to the operator one or
more future states in addition to the present system state. It is a
hypothetical concept. As previously noted, three classes of prediction
fidelity have been put forward by Bernotat and Widlok (1966):

CLASS I PREDICTION uses a mathematical power series to extrapolate
repetitively from the current value of the controlled system and its
derivatives. System time-history is ignored in favour of present movement.
As the prediction process is independent of system characteristics, Class I

-. prediction cannot be used to predict accurately far into the future. Its
necessarily short prediction spans are mainly applicable to stabilisation
and guidance problems, the absolute value of the prediction span being
dependent on the dynamics of the system and its external disturbances.
This technique has been widely used by the West German school (lernotat,
1972; Dey, 1972). Bernotat and Widlok (1966) note that although the
extrapolations are not as accurate as (for example) Class II prediction,
because man extrapolates very coarsely the method is more accurate than
anything the human can manage and in most cases will suffice to provide
some lightening of the load. Some degree of model inaccuracy can also be
tolerated due to the human operator's adaptability.



Extrapolation according to this method is a problem of approximation,
the function being approximated by a power series. A Taylor series
expansion is typically used, of the general form:

N
,n Iy~ee y.t d y(t)

y (t + e - n - i n ! dt n

where N is the number of derivative terms in the extrapolation. Dey (1972)
notes that the order of extrapolation should be one less than the order of
the controlled system. For example, a controlled process having three
integrations in the forward path would require a second order extrapolation.
It is a property of the Taylor series expansion that the deviations from
the true path will increase with increasing prediction time. Accuracy on
the other hand depends on how many terms of the series are used, and this
is limited by the computational resources. It is also influenced by the
level of noise contamination, which will be amplified as N, the number of
derivative terms, is increased.

CLASS II PREDICTION differs in that it assumes the controlled system's
transfer function or response characteristics are known and can be
included in the prediction model. Usually an analog model of the process
(though there is no reason why this should not be accomplished digitally-
Towill (1980)) is run in 'fast-time' alongside the real-time system to be
controlled. The fast-time model is fed with exactly the same control
inputs as the real-time process, and so extrapolates the predicted path of
the system from its present state. Because of its greater accuracy
Class II predictive displays permit prediction further into the future
than Class I. However, the two-time scale modelling technique does not
achieve perfect extrapolation since it does not include factors such as
crosswinds external to the system; hence unlimited length prediction spans
are not possible. its applications include long term stabilisation and
guidance problems, and this approach has been developed and widely used by
the American school, notably Kelley (1958, 1960a, b, 1962, 1968, 1972) and
his colleagues. Most of the documented applications centre around Class II
instruments. It is worth pointing out that the Class II approach can be
thought of as providing the best estimate of all the terms in a Class I
Taylor series expansion; since the Class II predictor is exact all but for
external disturbances.

CLASS III PREDICTION approaches the hypothetical perfect predictor in
that important external disturbances which are to some degree predictable
are included in the fast-time model. Obviously the incorporation of all
possible system disturbances (in a space mission for instance) tends to
stretch computing facilities to their limit, and therein lies the principal
drawback of this method. Class III predictive displays can, however, be
used to extrapolate far into the future, and their long and accurate pre-
diction spans provide a useful navigational feature.

In practical terms, Class II prediction will usually suffice for most
operational accuracy requirements since rapid updating of predictions will
tend to offset external dibturbances. However, if Class I can be success-
fully used a substantial saving in required computational power will result.

2.3 PREDICTION SPAN

There is conflicting evidence as to how far ahead prediction should
extend in the predictive display. Kelley (1960a) in an early predictive
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display study found that whilst approximate prediction models could be of
some assistance, useful prediction spans decreased with decreasing model
fidelity and learning times for effective control were increased. Bernotat
and Widlok (1966), however, report the opposite. As the order of their
extrapolation model was reduced, useful prediction times increased by a
few seconds.

Subjects in a submarine control task (Kelley,1960b), when permitted
to adjust prediction span, elected to reduce it as vehicle speed was
increased. Kelley (1962) thus recommends that slow, sluggish systems such
as submarines are best served by a long prediction span (25 to 30 seconds),
whereas quick-changing, high-frequency systems such as helicopters require
a shorter span (5 seconds). Dey and Johannsen (1969) on the other hand
suggest that the faster the control task, the longer the prediction time
span should be. Dey (1971) also found optimum prediction time to increase
as the controlled process increased from a second to a third order system.
The latter authors were concerned with extrapolative predictive displays
for VTOL aircraft hovering.

in the limiting case, extremely short spans provide insufficient
information and control instability ensues. An unnecessarily long span is,
by definition, unnecessary and may even act as system noise. It is not
known whether such noise distracts the operator and degrades his perform-
ance, or merely acts as superfluous information, the research findings
being inconclusive. Rouse (1970) for example found that a 40 second span
yielded worse overall performance than a 20 second span in an aircraft
guidance task, as subjects wasted time correcting distant errors that would
never arrive. Williams (1969) using an aircraft predicted pitch display
reported that performance remained the same with spans of 3.5 to 6.75
seconds, but deteriorated for spans of less than 3.5 seconds.

Besco (1964) in a simulated spacecraft attitude control task evaluated
prediction spans from 10 to 30 seconds but found no significant difference
on performance, perhaps due to inaccuracies in the prediction model used.
McLane and Wolf (1967) investigating predictor displays for submarine
course and depth control also reported no significant difference between
prediction spans of 20, 30 and 40 seconds, though the 40 second span did
result in larger overshoots. There was also some evidence that had a more
stringent tip-of-predicted-path-in-circle tracking task been employed,
r.m.s. error would have risen with lengthening prediction spans.

In a study of a simulated jet aircraft landing (Kennedy et al. 1975)
control performance rnot only increased sharply as spans increased from 5
to 20 secondsbut there was an indication that much higher performance
would occur with even longer spans. Yet in a follow-up study using
experienced' subjects from the first experiment, the authors found no
difference between spans of 10, 20 and 30 seconds (Smith and Kennedy, 1975).
Perhaps a wide range of spans may be equally effective for experienced
operators. Smith and Kennedy note that their experience in the Dunlap Labs,
where Kelley also carried out much of his work, indicates that operators
make use of the first or central segment of a predictor trace rather than
its end-point. This procedure effectively minimises the time to reach the
desired trajectory. In cases where time is not critical, however, there is
probably no advantage in using any particular segment of the trace, again
suggesting that a broad range of prediction spans may be equally
facilitating.

Practical considerations usually require the selection of one predic-
tion span, unless the operator is given the freedom to adjust the



prediction span for himself. Different systems will undoubtedly need
different prediction spans, related to the 'responsiveness' of the system
and to the magnitude and frequency of unpredictable disturbances.
Bernotat (1972) in this context comments that the proper choice of predic-
tion time can improve performance by as much as 70%. Kelley (1960b) has
noted that for some tasks span should be in terms of distance rather than
time. Rouse (1970), Dey (1971) and Bernotat (1972) have all found optimum
prediction spans/times in laboratory simulation studies.

2.4 INPUT UNCERTAINTY

This refers to the accuracy of the information input to the prediction
model, and is not the same as prediction model fidelity. Input uncertainty
is caused by normal variability in system operation or by external disturb-
ances to the controlled system (eg. cross winds affecting aircraft flight,
transmission noise on signal lines). The net effect of these variations
is, however, similar to prediction model inaccuracies in that they both
serve to reduce the credibility of the predicted information displayed to
the operator. If the uncertainty cannot be incorporated into the predic-
tive trace, for example because its form is entirely unknown, then there
will be a discrepancy between actual and predicted paths which can only
serve to mislead the operator. In this case the useful prediction span
may have to be reduced. If however the nature of the uncertainty can be
measured or forecast and incorporated into the predicted trace then the
display has the addition of a diagnostic feature. one suggested approach
is to display multiple predicted paths corresponding to the mean predicted
path with extreme ranges to either side. There has been little quantita-
tive research in this area (see Tainsh, 1977).

2.5 REPETITION (REFRESH) RATE

Repetition (refresh) rate of the display is the number of successive
predictions displayed to the operator per unit of time. In theory for
fast-time models it is determined by the prediction model time scale, the
prediction span, and a negligible amount of time spent in updating or
resetting the model. In practice the maximum repetition rate is determined
by the limits of the computer one is using, and may be quite low (in the
order of seconds). With low repetition rates the information conveyed by
the predictor trace becomes more out of date as the cycle proceeds, and
the predictive display itself acts as a sampled data system. Low repeti-
tion rates may also cause display flicker and associated visual fatigue
problems for the operator as well as control difficulties. In general the
required repetition rate increases as system response becomes more rapid.

The frequency at which the predictor model is updated with fresh
information is often identical to the repetition rate (any faster would
be pointless), in which case its effects are synonymous. When updating
frequency is lower than the repetition rate the first prediction after
updating will be the most accurate and each successive prediction will
decrease in accuracy until the model is again updated. One solution to
this dilemma is to update the prediction model artificially by extra-
polating past sampled outputs of the system over the updating period;
another would be to let the predictor sample its own predictions and so
update itself. For most applications repetition rate and frequency of up-
dating are the same and are predetermined by the computer system. in any
case their effect is likely to be slight. McCoy and Frost (1966) report
that reducing the updating frequency of their predictor from continuous
updating down to once every 50 seconds apparently made no difference to
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performance. The practical significance is that prediction model inaccur-

acies can sometimes be offset by a high frequency of updating.

2.6 MODE OF CONTROL

Two principal modes of control may be distinguished, depending on the
philosophy behind the predictive display in use and the application for
which it has been designed. These are on-line control and off-line control,
of which category exploratory control and supervisory control (monitoring)
are special cases. Figure 2 illustrates the main differences.

In on-line control the input to the prediction model is identical to
the control input -othe system itself, so the operator sees a predicted
path based on the assumption that he does not alter his control inpuE.
Any control change is immnediately reflected on the predictive display.
This mode of control is particularly suited to situations where an 'ideal'
path or trajectory can be formulated, eg aircraft landing. The pilot, via
a continuous series of trial-and-error control actions in fast-time with
real-time effects, is able to reduce the difference between actual and
desired trajectories until his plane is on the runway glidepath.

In off-line control a hypothetical input is fed to the prediction
model based on the assumption that the operator's control action will
change during the predicted interval. The hypothetical input may take
the form of sampled present control inputs or a complex pre-programnmed
sequence of control actions yielding a display of several different
responses, the so-called 'multiple path prediction'. Exploratory control
is a special case of off-line control. It differs from on-line control
in that the operator's control actions are not input to the plant until he
decides that the results of his choice of action, as reflected on the
predictor display, constitute the optimum solution. In effect his control
is directly coupled to the predictor display but indirectly coupled to the
process, via an appropriate switch or sample-and-hold circuit. The
selected control action may be the operator's most recent manipulation,
or one that has previously been placed in 'storage' (Kelley, 1968). A
variation of this technique is the case where the operator adjusts a
hypothetical control program, building up a sequence of control actions,
and only then does he command the actual controller to assume the form
(in real-time, naturally) of the hypothetical program. Kelley et al (1973)
have termed this flexible approach 'automanual control'.

It is evident that all forms of off-line control presuppose the
luxury of sufficient time to explore the potential effects of alternative
control actions. If appreciable searching is required before the best
performance is reached, on-line control may be inadvisable as it will lead
to substantially higher fuel consumption (McCoy and Frost, 1966). Warner
(1969) has shown that exploratory control is marginally better than on-line
control (though not statistically different), so long as the required
decision times are not short. Where control decisions are required
imediately, however, on-line control is generally to be preferred. The
additional control errors and use of fuel and resources attributable to an
on-line mode of control are usually negligible when compared to the con-
sequences of a long decision time.

The fourth mode of control, supervisorycontol, can be though of as
a further special case of off-line control and refers to those situations
where the primary mode of control is automatic. The human functions in a
system monitor capacity and may override the automatic system in cases of
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emergency ("reversion" in missile systems), system failure, or for
maintenance. Strictly, the entire control system is on-line, while the
automatic and manual components are on-line and off-line respectively.
The prediction model in this case also contains a fast-time model of the
automatic controller. Two variations of supervisory control are possible,
differing in the degree of 'pureness' of the off-line component. In cases
where the automatic control system is malfunctioning and manual back-up is
essential, the operator may have little or no time to explore the utility
of various control inputs. In this extreme he will be functioning in an
on-line mode. In cases where automatic control mal-function occurs, but
time is non-critical, or where the automatic system is functioning
correctly but unanticipated events demand manual override, then the
operator may be functioning predominantly in an off-line mode.

The simulated dual-axis control task described in this report is an
example of on-line prediction.

3. DETAILED EXPERIMENTAL METHOD USED IN THIS STUDY

A laboratory task was sought which could be generalised to a variety of
control and guidance situations and which would facilitate the detailed invest-
igation of a number of predictor display design features. A two-axis compen-
satory control task was chosen, the object being to keep the system output
position in each of two axes simultaneously within certain limits. To facili-
tate later analysis, each axis was displayed and controlled separately.

3.1 THE SIMULATION

The simulation consisted of two independent unstable channels having
identical third-order dynamics (Figure 3). Each channel comprised three
integrations in series with a digital potentiometer, and was driven by an
error signal (E) derived from the subject's control input (yin) minus a
disturbance level (d). The disturbance level varied as a 'random walk'
in its magnitude, duration and direction, but on average changed once
every 10 seconds or so. The output (Vout) from each channel controlled
the position of a pointer set against the calibrated scale of a vertical
meter. The value of the digital potentiometer determined the system gain
in each axis.

3.2 THE TASK

The experimental subject's task was to anticipate the path of two
pointers moving against vertical scales calibrated 1 - 100 and by his
control actions to maintain the pointers within close proximity of the
50 mark, keeping both pointers simultaneously between 45 and 55 on the
scales. The display arrangement is shown in Figure 4, and the control
unit in Figure 5. A seconds elapsed time clock was provided on the
display, together with an indication of how many seconds the pointers had
been simultaneously within limits.

The pointers could not be viewed simultaneously but were instead
selected by pressing a button above the appropriate slider on the control
unit. To assist control, the option of a predictor trace was provided
extending to the right of both pointers. Prediction was based either on
an approximately accurate Taylor series extrapolation model (Tay) using
the three most recent data points, or on a 'Perfect predictor' model (PPM)
based on the simulation itself run in fast-time. The Taylor series extra-
polation model took the form:
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2y(t + e) - y(t) + y(t)9 + y(t)6 /2.

where (t + e) is the predicted value of y at 0 seconds ahead of current
time t. (t) and y(t) are respectively first and second order time-
derivative terms.

The determination of an appropriate prediction model is largely an
engineering problem, and the two models used here were chosen as repre-
senting different extremes of computational power requirements. Smoothing
problems encountered with the Taylor series approach were overcome by
generating derivative terms directly from the simulation, rather than from
successive values of the output. In a practical application where one
would be forced to use successive values of the output as the basis for
calculating derivative terms, output smoothing could be derived by estab-
lished techniques (moving averages, digital filters).

Initial conditions for the simulation were keyed in by the experimenter
from a teletype at the beginning of each trial. Adjustable variables were
pointer limits, system gain (effectively system speed of response, achieved
by adjusting the potentiometer value), level and timing of the random
disturbances, type of prediction model used, prediction span (length of
predictor trace from 0 up to 30 seconds), and trial length in seconds. At
the end of each trial the total time within limits score was output on the
display as feedback to the subject.

3.3 EXPERIMENTAL DESIGN

Factors examined in this study were system gain, the level of random
disturbances (uncertainty), the prediction model (Taylor series or Perfect
Predictor) and the prediction span. The design used was a hybrid between
a full repeated measures and a full factorial design, with repeated
measures on some of the factors (Winer, 1971; Chapter 7). This type of
design has the advantages of tight experimental control and an economic
use of subjects.

Each subject underwent three levels of 'uncertainty'/disturbance level
Q 00, + 100, + 200), four levels of prediction span (0, 5, 15, and 30
seconds) and both types of prediction model (Taylor series and Perfect
Predictor). The presentation order of the 21 trials was randomised to
overcome sequence effects, whilst a thorough training schedule ensured
practice effects were minimal.

A total of 15 subjects were used. These were randomly assigned to
three independent groups of 5. Each group undertook the experimental
trials as described above for one of three levels of gain, corresponding
to slow, medium and fast system responsiveness and achieved by adjusting
the potentiometer.

The design may be represented as follows:
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NP Tay PPM Tay PPM! Tay PPM

0 5 5 15 15130 30

Low Uncertainty 01 01 01 01 GlI Cl GI
LOWI
GAIN Medium Uncertainty 01 01 01 GI Gi 01 Gl

High Uncertainty Cl Gi GI Gi 01 Gi I01

Low uncertainty 02 G2 G2 G2 G2 0G2 C2
MEDIUM Medium Uncertainty G2 G2 G2 02 G2 G2 G2
GAIN

High Uncertainty 02 G2 02 G2 G2 02 G2

Low Uncertainty G3 G3 03 G3 G3 G3 G3
HIGH Medium Uncertainty 03 03 03 G3 03 G3 G3
GAINI

High Uncertainty 03 G3 03 03 G03 03 03

where G1, G2, 03 represent independent groups of five subjects who under-
went all 'Uncertainty, Prediction model, arnd Prediction span conditions in
a randomised order.

3.4 PROCEDURE

The experiments were carried out on a PDP-12 computer. On arrival,
subjects were given a written set of instructions and the nature of the
task was demonstrated. Six training trials were then carried out under a
medium level of uncertainty (_+ 100 disturbance level). A standard training
order was used: No Predictor (NP), Perfect Predictor Model (PPM), Taylor
series extrapolation model (Tay), PPM, Tay, NP. An abbreviated results
printout was obtained for each training trial.

The experimental trials then followed, their order being randomised.
Each trial lasted for 5 minutes with a break of 4 minutes between trials.
During this time subjects completed a short questionnaire giving their
commnts on the last trial. A rest period was given midway through the
experiment. After all the trials had been run, subjects' overall impres-
sions were noted.

3.5 SUBJECTS

The subjects used in this study were undergraduate students. All had

some mathematical background.

3.6 DATA COLLECTION

An automatic data capture program logged every system input made by
the subject, together with system states such as pointer positions, into
store at 1 second intervals. At the end of each trial an abbreviated
printout of results could be obtained showing time within limits for each
pointer and both pointers simultaneously, time spent looking at each
pointer, integrated absolute error scores for each channel plus histograms
of control actions and pointer positions. In addition the option of a
fuller printout giving control positions at 1 second intervals, disturbance
levels and last predicted value displayed at 10 second intervals, and a
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breakdown of channel switchings could be selected. A comprehensive
analysis of each trial was thus possible, which could be matched to
subjects' coumments.

4. RESULTS AND STATISTICS

Time in seconds during which one or both pointers had been outside the
prescribed error limits was used as the main performance measure. (In practice,
integrated absolute error scores - the total pointer deviations from the
50 scale marker - were found to give similar results, and so are not reported
here.)

Group averages of the performance measure in the different experimental
conditions have been plotted in Figures 6 - 9. Figure 6 shows the grand
averages of the Taylor series extrapolation model and Perfect predictor model
for the four prediction spans (each point on the graph is the average of three
gains, three levels of uncertainty and five subjects). Figures 7 - 9 expand
the basic information of Figure 6 to include the effects of different levels of
uncertainty and system gain, separate graphs being drawn for Low, Medium and
High gain. Much could also be learnt about individual subjects' control
strategies from scrutiny of the control histograms for each trial, from
subjective co -ents and from the completed questionnaires.

Inspection of the time outside limits data showed it to be severely posi-
tively skewed. As is appropriate with severely skewed time data of this kind,
the within-cell variances were first stabilized before ANOVA analysis by
performing a logarithmic transform on the raw error scores, of the form:

xvijk - log, 0 x ik+ 1)

The addition of 1 to each x ikterm served to prevent the occurrence of
1og10 (0).ij

The transformed data were analysed in several different ways. A prelimi-
nary analysis (Table 1) was used to test for broad differences between the No
Predictor, Taylor series extrapolation model (30 seconds prediction span) and
Perfect Predictor model (also 30 seconds prediction span) conditions. More

detailed analyses were also performed on the full set of Taylor series data
(Table 2) and on the complete set of Perfect Predictor data (Table 3). The
ANOVA model used was appropriate to multi-factor designs of this type containing
some repeated measures, and was followed by tests of simple effects where a
significant interaction term had been obtained. Conservative 'F' ratios were
employed throughout (Winer, 1971).

5. DISCUSSION

5.1 TIME OUTSIDE LIMITS DATA

Considering first the preliminary ANOVA (Table 1) which excluded
prediction span by comparing scores from the No Predictor condition with
scores from the Taylor series and Perfect predictor models having the full
30 seconds prediction span, it can be seen that all the main effects (gain,
uncertainty, prediction model) were highly statistically significant, with
the complication of considerable interactions.

In general, time outside limits error scores were found to increase
with faster system response and with increasing levels of uncertainty. The



significant interaction term (gain x uncertainty) suggests that uncertainty
had a differential effect depending on the system responsiveness. The
third main effect - that of a NP vs Taylor series vs Perfect Predictor
models - was highly significant, coupled toa strong interaction with
uncertainty (the Taylor series model was peculiarly immune to variations
in uncertainty), and a lesser interaction with system gain.

A major finding is that there was virtually no difference between the
two prediction model scores in the Low gain condition (Figure 7).
Inspection of the original data shows that near perfect within-limits
performance was achieved using the Taylor series extrapolation model as
well as with the Perfect predictor trace. This seems to reinforce Kelley' s
(1960a) and Bernotat's (1972) earlier findings of the effectiveness of
simple prediction models. Figure 6 demonstrates that in overall terms,
however, the Perfect Predictor was clearly superior to the Taylor series
model, especially with longer prediction spans: though either prediction
model was preferable to No Predictor at all. It is also evidence from
Figure 6 that minimum error scores were achieved with the full 30 second
prediction span for the Taylor series model, but with a prediction span of
only 15 seconds for the Perfect Predictor trace.

In order to study the interactions with prediction spans in more
detail, two separate analyses were performed on the complete data - one
analysis of the Taylor series scores and a separate analysis of the Perfect
predictor model scores.

5.2 INTERPRETATION OF TAYLOR SERIES DATA

The analysis of Table 2 indicates that for the Taylor series predic-
tion model a strong effect due to system gain (0.1% significance) was

* found, and a somewhat lesser effect (1% significance) due to prediction
* span. A slight interaction between these two variables was also present.
* No effect was discovered due to uncertainty, and it is one of the important

features of using a Taylor series prediction model that no significant
worsening in performance can be expected as the level of input disturbance
rises. (The slow response time of such a model may well have served to
act as a filter to input noise.)

Because the gain x prediction span interaction was significant, tests
on simple main effects were called for rather than further direct testing
of the main effects. Results of such tests are given in Table 2a. Exam-
ining the interaction effect in more detail suggests that system gain had
an increasingly significant effect when any form of Taylor series
predictor trace, however short, was introduced. Conversely, the effect
of different prediction spans was most marked for slow system response,
longer spans resulting in lower error scores, but its effect lessened as
the gain was increased. No significant difference between different spans
was found in the High gain condition.

* -~ Clearly the choice of prediction span using this type of extrapolation
model will depend on the gain of the system concerned. For systems with
slow or moderate response times the maxim "the longer the better" is valid.
For system with very fast response times a slight reduction in prediction
span may be advisable on practical grounds.

5.3 INTERPRETATION OF PERFECT PREDICTOR DATA

The analysis shown in Table 3 demonstrates that all the main effects
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(gain, uncertainty, prediction span) achieved a high degree of statistical
significance, in addition to a strong gain x uncdrtainty interaction term
(significart 1%), and a lesser uncertainty x prediction span term (signifi-
cant 5%). It is evident that the Perfect predictor model reacted somewhat
differently to changes in the experimental conditions than did its Taylor
series counterpart. In both cases performance deteriorated as system
response speed increased, (Figures 7 - 9) but in contrast to the Taylor
series data the Perfect predictor was also adversely affected by increasing
the level of uncertainty. This effect was somewhat dependent on the pre-
diction span in use, a more marked deterioration in performance occurring
for longer prediction spans. This point will be further discussed below.

Because the two interaction terms achieved significance, tests on
simple main effects were again called for rather than further direct
testing of the main effects. Findings from the analyses are summarised in
Table 3 a, b. Considering first the gain x uncertainty interaction, this
point is perhaps of rather academic interest as the analysis is in terms
of means obtained by averaging over scores from the four prediction span
conditions. It is not discussed further.

Considering the uncertainty x prediction span interaction, test for
simple main effects showed no difference due to uncertainty for short
prediction spans (0 and 5 seconds), but a highly significant effect
(significan 0.1%) for prediction spans of 15 and 30 seconds. Figures 7 -

9 represent this information pictorially. In terms of prediction spans,
though the effect due to different spans was highly significant for all
levels of uncertainty, it was most pronounced at lower uncertainty levels.
Inspection of Figures 7 - 9 indicates that an optimum prediction span
existed for the Perfect predictor at higher levels of uncertainty. This
point had not been revealed by the analysis so far, and so it was decided
to carry out trend tests on each gain x uncertainty combination to explore
the issue further. The test thought to be most appropriate was Page's L
non-parametric test on trends, as this test is more powerful than the
ouxiibus F-test or the equivalent Friedman test (Boersma et al., 1964).
The predicted order amongst prediction spans tested was in accord with the
cell averages for the Perfect predictor data shown in Figures 7 - 9 and
the significance levels obtained are given below:

LOW MEDIUM HIGH
UNCERTAINTY UNCERTAINTY UNCERTAINTY

0 5 15 30 0 5 15 30 0 5 15 30
LOW GAIN - =

predicted trend
Sig. 1% Sig. 5% Sig. 1%

~DU AN0 5 15 30 0 5 15 30 0 5 15 30

Sig.O.1% Sig. 5% Sig. 1%

0 5 15 30 0 5 15 30 0 5 15 30

HIGH GAIN ----------

Sig. 0.1% Sig. 0.17 Sig. 0.1%

Test for trends amongst prediction spans for
Perfect predictor model data
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It can be seen that the optimum pre* ction span, ie that giving the lowest
error scores, decreased as uncertainty increased. This effect was most
noticeable for the High gain (fast responsc) condition (Figure 9) when the
optimum span decreased from approximately 23 seconds to 15 seconds, then to
approximately 10 seconds as the level of input disturbance rose. It would
seem that operators cannot use the full extent of the Perfect predictor
trace due to its long-distance predictive information being rendered
inaccurate by input uncertainty. This confirms Rouse's (1970) findings.

Given these interactions, it is clear to see why previous workers have
come up with conflicting findings concerning optimum prediction spans.
Contrasting the Perfect predictor scores with the Taylor series extrapola-
tion model; only in the High gain condition was there any indication that
a reduction in usable span to approximately 15 seconds occurred, but Ais
Figure 9 suggests this effect was nowhere near as significant (Page's L
significant at 5%) as for the corresponding Perfect predictor condition
(Page's L significant at 0.1%).

5.4 CO1NTROL HISTOGRAMS

Inspection of the control histograms (Figure 10 gives examples) for
each trial shows that distinct patterns of control were present for the
two prediction models, though of course variations did occur across
subjects. Typically, control without any form of predictor was character-
ised by use of the extreme limits of control in 'bang-bang' fashion. With
the introduction of a 5 second Taylor series trace contr1! was still
characterised by long periods spent at the extremes, but there was an
additional distribution at the centre of the range corre'sponding to finer
control adjustments. This central distribution typically spread towards
the extremes as pediction span was extended to 30 seconds.

In the case of the Perfect predictor model, control was characterised
by a much smoother gaussian-type distribution. Though for short prediction
spans some time was spent at the extreme limits of the controls, this
component disappeared as prediction span was increased beyond 5 seconds,
and control then consisted of very fine adjustments around the centre of
the range. In other words, the fast response of the Perfect predictor
model made immediately obvious the effect of a control action and resulted
in a smoother pattern of control, whereas the Taylor series rate-of-change
predictor required time for a control change to affect it and so control,
even if smooth at the start of a trial, frequently ended up at the extremes
as the system became progressively more unstable.

The control histograms provided a useful extra indication of perform-
ance. In the Low gain condition, for example, although error scroes were
much the same for the two prediction models, scrutiny of the control
histograms suggests that with the Taylor series model this was achieved by
considerably greater control effort. The Perfect predictor gave much
smoother control than did the Taylor series equivalent, though it must be
stressed that either predictor was preferable to none at all.

The effect of introducing input disturbances to the system was to
spread the distribution of control actions towards the extremes, and a
similar effect was found when increasing system gain.

5.5 DISPLAY SWITCHING

Analysis of the display switching data also revealed some interesting
variations in strategy. Display switching was most regular when the
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pointers were within the prescribed limits and under control. Switching
rates increased as control of the pointer(s) was progressively lost: t'his
was most likely to occur for short prediction spans and high gains. In
addition, the bias in the time spent looking at the left-or-right-hand
meter shifted during the course of a trial, more time being spent attending
to the pointer most out of control. In the stable equilibrium state, a
switching rate of once every few seconds was typical.

5.6 SUBJECTIVE COMMEhNTS AND QUESTIONNAIRE ANALYSIS

Analysis of subjective comments from the task tended to confirm the
impressions gained from the objective analyses. Subjects all stated that
they preferred using a predictor trace to control without a predictor, and
this was reflected as the "with predictor" trials being rated as easier to
control. opinions were divided for preference between the Taylor series
model and the Perfect predictor model. Seven of the fifteen subjects
preferred the Perfect predictor trace in that it was a lot more accurate
and gave imediate feedback of the consequences of control changes. Five
subjects preferred the Taylor series trace because it6s slow rate-of-change
response was easier to follow and gave more time for them to respond.
Three subjects failed to detect any difference between the two prediction
models. In all, the Perfect predictor model was rated as being more use-
ful than its Taylor series counterpart for a given prediction span.
Subjects also rated their control actions as being considerably smoother
using the Perfect predictor trace, particularly with longer prediction
spans.

On the question of prediction spans, subjects were equally divided in
their preference for the longest possible prediction span (30 seconds) or
a shorter span (eg 15 seconds). The 5 second span was universally disliked
though thought just possible to control with. On their ratings of the
predictor' s usefulness subjects rated the 30 second span as being most use-
ful in the low gain condition but the 15 second span as being most useful
in the faster responding Medium and High gain conditions. Most subjects
failed to detect any variations in the level of input uncertainty, though
several coimmented that the pointer appeared to disobey the controls or to
move about of its own accord in some of the trials. It was thought more
difficult to control these trials (High uncertainty), particularly in the
High gain condition using long prediction spans based on the Perfect
predictor model, as the variations due to uncertainty in the middle-to-end
part of the trace were found misleading. It is interesting to note that
with one exception all subjects reported using the end segment of the trace
for control - this finding is clearly at odds with reports from the Dunlap
labs mentioned earlier. Smith and Kennedy (1975) had noted that their
subjects used the first or central segment of a trace in order to effecti-
vely minimise the time to reach their desired trajectory. Clearly subjects
make full use of the trace they are given.

It is apparent from analysis of the strategies reported by the
subjects that anticipation of the pointers' movements played a vital part
in control, especially for the No Predictor condition and to a lesser
degree in the Taylor series condition. Use of a perfectly accurate pre-
diction model effectively eliminated the need to anticipate the pointers'
trajectory. In the No Predictor conditions, subjects followed the strategy
of moving the controls to their extreme to compensate as soon as any
perceived movement of the pointer was detected. With experience some
subjects tried to anticipate the pointers' point of turn and to gradually
reduce their control input beforehand. Again, with experience of the

15



system dynamics (probably gained from the 'with predictor' conditions) some
subjects restricted their range of control actions so as not to use the
extreme positions, and made their actions consciously smoother.

Subjects varied widely in their ability to verbalise their control
processes. One subject reported controlling on the theory that the system
dynamics were analogous to simple harmonic motion, another evolved a yo-yo
model. It is clear from this admittedly anecdotal evidence that subjects
anticipations were based on some crude form of internal model of the
process, through which predictions could be made in the absence of a
computer-provided prediction. Using the Taylor series predictor subjects
frequently used the slope of the trace as the main criterion for the amount
of compensation which they applied. Some anticipation was still required,
however, and the problem became one of keeping the predictor trace hori-
zontal within the prescribed limits and with the pointer stationary. In
the Perfect predictor model conditions, the problem was further simplified
and became one of watching the end of the trace and compensating to keep it
within limits and as near to the 50 mark as possible. A slightly different
policy was adopted if a pointer drifted outside the limits - the object
then became to get that pointer back within limits as quickly as possible,
if possible keeping the end point of the trace between the limits as the
pointer approached them.

6. CONCLUSIONS

1. A comprehensive study has been carried out using a generalised two-axis
control and guidance task to determine how variations in predictor display para-
meters and task characteristics affect man-machine system performance measures.

2. Predictive displays were found to bring about an improvement over unaided
manual control in time-on-target scores in all the experimental conditions.

3. System speed of response determined the sophistication of prediction model
required. For systems with a slow speed of response, there was little to choose
between a highly accurate and a relatively unsophisticated prediction model,
given that adequate performance with the latter was achieved at the expense of
greater control effort. For systems having moderate to fast response times, the
more sophisticated prediction model was justified.

4. Recoimendations can be made regarding the choice of an appropriate predic-
tion span for simple and sophisticated prediction models under various levels of
system gain and input disturbance or uncertainty. With simple prediction models,
which seemed relatively inmmune to uncertainty, prediction span was affected by
system gain alone. For systems with low to medium gains, the maxim "the longer
the better" was appropriate. At high gains a reduction in usable prediction
span was advisable. With a hypothetical Perfect prediction model, the optimum
prediction span reduced with the combined effect of increasing uncertainty level
and increasing system gain.

5. Conflicting results of previous workers are explained in terms of the
differing gains, levels of uncertainty and prediction models of the systems
investigated.

6. Reported strategies from subjects in the present study suggest that the
formation of a crude form of internal predictive model is an important part of
unaided control.

7. Coupled with the findings of previous workers, there is an argument for
including predictor aiding in future complex manual control applications, such
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as flight systems and missile guidance. It is recommended that a simulation
approach similar to that described in this memorandum be adopted in order to
optimise predictive display parameters for the User's specific application.
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TABLE 1 SUIMMARY ANOVA FOR LOG TRANSFORMED NP vs TAY (30 SECONDS)
vs PPM (30 SECONDS) SCORES (TIME OUTSIDE LIMITS DATA)

Source Sum of Variance 'F' Significance
Squares Estimate level

Between Subjects

Gain 59.274 2 29.637 100.24 0.1% (df 2,12)

Subjects within groups 3.548 12 0.296

Within Subjects

Uncertainty 4.757 2 2.379 25.82 0.12 (df 1,12)

Gain x Uncertainty 3.871 4 0.968 10.51 1% (df 2,12)

Uncertainty x S.w.g. 2.211 24 0.092

Model (NP/Tay/PPM) 32.522 2 16.261 34.47 0.1% (df 1,12)

Gain x Model 9.657 4 2.414 5.12 5% (df 2,12)

Model x S.w.g. 11.321 24 0.472

Uncertainty x Model 6.781 4 1.695 22.39 0.1% (df 1,12)

Gain x Uncertainty x Model 4.86 8 0.608 8.03 1% (df 2,12)

Uncertainty x Model x S.w.g.

Conservative Test



TABLE 2 SUMM1ARY ANOVA FOR LOG TRANSFORMED TAYLOR SERIES SCORES
(TIME OUTSIDE LIMITS DATA.)

Source Sum of df Variance Significance

Squares Estimate level

Between Subjects

Gain 82.827 2 41.413 32.98 0.1% (df 2,12)

Subjects within groups 15.07 12 1.256

Within Subjects

Uncertainty 0.0475 2 0.0238 0.16 - (df 1,12)

Gain x Uncertainty 0.7887 4 0.1972 1.29 - (df 2,12)

Prediction Span 13.66 3 4.553 13.05 1% (df 1,12)

Gain x Prediction Span 9.988 6 1.665 4.77 5% (df 2,12)

Prediction Span x S.wg. 12.557 36 0.349

Uncertainty x Prediction Span 0.455 6 0.0758 0.59 - (df 1,12)

Gain x Uncertainty x
Prediction Span 2.065 12 0.1721 1.35 - (df 2,12)

Uncertainty x Prediction
Span x S.w.g. 9.193 72 0.1277

Conservative Test

a) TESTS ON SIMPLE EFFECTS (Gain x Prediction Span Interaction)

Source Significance

Between Gains at 0 seconds Prediction Span 5%

Between Gains at 5 seconds Prediction Span 0.12

Between Gains at 15 seconds Prediction Span 0.1%

Between Gains at 30 seconds Prediction Span 0.1%

Between Prediction Spans at Low Gain 0.1%

Between Prediction Spans at Medium Gain 5%

Between Prediction Spans at High Gain



TABLE 3 SUMMARY ANOVA FOR LOG TRANSFORMED PERFECT PREDICTOR
MODEL SCORES (TIME OUTSIDE LIMITS DATAJ

Sum of Variance SignificanceSource df 'F'
Squares Estimate level

Between Subjects

Gain 48.448 2 24.224 45.76 0.1% (df 2,12)

Subjects within groups 6.353 12 0.529

Within Subjects

Uncertainty 7.866 2 3.933 13.88 1% (df 1,12)

Gain x Uncertainty 11.024 4 2.756 9.73 1% (df 2,12)

Prediction Span 49.706 3 16.569 37.92 0.1% (df 1,12)

Gain x Prediction Span 4.695 6 0.783 1.79 - (df 2,12)

Prediction Span x S.w.g. 15.73 36 0.437

Uncertainty x Prediction Span 9.197 6 1.533 5.86 5% (df 1,12)

Gain x Uncertainty x
Prediction Span 8.923 12 0.744 2.84 - (df 2,12)

Uncertainty x Prediction Span
x S.w.g. 18.845 72 0.262

Conservative Test

a) TESTS ON SIMPLE EFFECTS (Gain x Uncertainty Interaction) T

Source Significance

Between Gains at Low Uncertainty
Between Gains at Medium Uncertainty 0.1%
Between Gains at High Uncertainty 0.1%

Between Uncertainty at Low Gain
Between Uncertainty at Medium Gain 1%
Between Uncertainty at High Gain 0.1%

b) TESTS ON SIMPLE EFFECTS (Uncertainty x Prediction Span Interaction)

Source Significance

Between Uncertainty at 0 seconds Prediction Span
Between Uncertainty at 5 seconds Prediction Span
Between Uncertainty at 15 seconds Prediction Span 0.1%
Between Uncertainty at 30 seconds Prediction Span 0.1%

Between Prediction Spans at Low Uncertainty 0.1%
Between Prediction Spans at Medium Uncertainty 0.1%
Between Prediction Spans at High Uncertainty 0.1% (Just)
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